Given a string
Example 1:
Input: expression = "2-1-1" Output: [0,2] Explanation: ((2-1)-1) = 0 (2-(1-1)) = 2
Example 2:
Input: expression = "2*3-4*5" Output: [-34,-14,-10,-10,10] Explanation: (2*(3-(4*5))) = -34 ((2*3)-(4*5)) = -14 ((2*(3-4))*5) = -10 (2*((3-4)*5)) = -10 (((2*3)-4)*5) = 10
Constraints:
1 <= expression.length <= 20 expression consists of digits and the operator'+' ,'-' , and'*' .- All the integer values in the input expression are in the range
[0, 99] .
Solution
這題也能看成是 95. Unique Binary Search Trees II 的衍生題
這題用 recursion 的方式來解會比較容易理解
能放入括號的,一定是運算符號的左右兩側,也就是 (...) + (...) or (...) - (...) or (...) * (...)
而括號裡面,也可以再用這種方式再去切分
所以可以想成是 binary tree 的資料結構
每當遇到運算符號,就去切分成左右兩段,找到計算的值後,再一個merge回來
kotlin(參考解答)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Solution { | |
private val map = mutableMapOf<String,List<Int>>() | |
fun diffWaysToCompute(expression: String): List<Int> { | |
if (map[expression] != null) { | |
return map[expression]!! | |
} | |
val ans = mutableListOf<Int>() | |
for(i in expression.indices) { | |
if(expression[i] == '+' || expression[i] == '-' || expression[i] == '*') { | |
val left = diffWaysToCompute(expression.substring(0,i)) | |
val right = diffWaysToCompute(expression.substring(i+1)) | |
for(j in left.indices) { | |
for(k in right.indices) { | |
when { | |
expression[i] == '+' -> ans.add(left[j] + right[k]) | |
expression[i] == '-' -> ans.add(left[j] - right[k]) | |
expression[i] == '*' -> ans.add(left[j] * right[k]) | |
} | |
} | |
} | |
} | |
} | |
if(ans.isEmpty()) { | |
ans.add(expression.toInt()) | |
} | |
map[expression] = ans | |
return ans | |
} | |
} |
沒有留言:
張貼留言