Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2 .
Note: m and n will be at most 100.
<Solution>Unique Path 的衍生題
這次增加的條件是,有些位置是無法到達的
那思路還是一樣,用 dynamic programming 的方式去解
解題想法如下
- 從位置 (0,0) 出發,如果遇到障礙物,就把該位置可到達步數清為0
- 如果沒遇到障礙物,就用 dp[i][j] = dp[i-1][j] + dp[i][j-1] 的概念去解
c++
kotlin
沒有留言:
張貼留言