2016年12月14日 星期三

[LeetCode] 63. Unique Paths II

轉自LeetCode

Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]
The total number of unique paths is 2.
Note: m and n will be at most 100.
<Solution>

Unique Path 的衍生題

這次增加的條件是,有些位置是無法到達的

那思路還是一樣,用 dynamic programming 的方式去解

解題想法如下
  • 從位置 (0,0) 出發,如果遇到障礙物,就把該位置可到達步數清為0
  • 如果沒遇到障礙物,就用 dp[i][j] = dp[i-1][j] + dp[i][j-1] 的概念去解
code 如下
c++
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
if(obstacleGrid.size() == 1 && obstacleGrid[0].size() == 1) {
return (obstacleGrid[0][0] == 1) ? 0 : 1;
}
const int m = obstacleGrid.size(), n = obstacleGrid[0].size();
vector<int> dp(n, 0);
dp[0] = 1;
for(int r = 0; r < m; r++) {
for(int c = 0; c < n; c++) {
if(obstacleGrid[r][c] == 1) {
//> obstacle
dp[c] = 0;
}
else if(c > 0) {
dp[c] += dp[c-1];
}
}
}
return dp[n-1];
}
};

kotlin
class Solution {
fun uniquePathsWithObstacles(obstacleGrid: Array<IntArray>): Int {
return if(obstacleGrid[0][0] == 1) {
0
} else {
val m = obstacleGrid.size
val n = obstacleGrid[0].size
val dp = Array(m) { IntArray(n) {0} }
dp[0][0] = 1
for(c in 1 until n) {
dp[0][c] = if(obstacleGrid[0][c] == 1) 0 else dp[0][c-1]
}
for(r in 1 until m) {
dp[r][0] = if(obstacleGrid[r][0] == 1) 0 else dp[r-1][0]
}
for(r in 1 until m) {
for (c in 1 until n) {
dp[r][c] = if(obstacleGrid[r][c] == 1) {
0
} else {
dp[r-1][c] + dp[r][c-1]
}
}
}
dp.last().last()
}
}
}

沒有留言:

張貼留言