2016年12月16日 星期五

[LeetCode] 74. Search a 2D Matrix

轉自LeetCode

Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
  • Integers in each row are sorted from left to right.
  • The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
[
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]
Given target = 3, return true.
<Solution>

從題目知道,first col 和每個 row 是有排序的規則在

那麼就可以利用這一點

想法如下
  • 看哪一個 first col 的元素 matrix[row][0] 是小於或等於 target 的,等於當然就回傳 true,小於就代表 target 會落在此 row
  • 接著從該 row 的後面往前找,如果有找到就回傳 true,沒有就回傳 false
code 如下,O(mxn)

class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
if(matrix.empty() || matrix[0][0] > target || matrix.back().back() < target) {
return false;
}
const int m = matrix.size(), n = matrix[0].size();
//> find row position
int row = m-1;
while(row >= 0 && matrix[row][0] > target) {
--row;
}
if(matrix[row][0] == target) {
return true;
}
//> find col position
int col = n-1;
while(col >= 0 && matrix[row][col] != target) {
--col;
}
return (col < 0) ? false : true;
}
};
或者,可以針對 row 和 col 做兩次 binary search

這樣可以優化到O(logM + logN)

code 如下
c++
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
if(matrix.empty() || matrix[0][0] > target || matrix.back().back() < target) {
return false;
}
//> use binary search to find row position
int up = 0, down = matrix.size()-1;
while(up <= down) {
int mid = (up + down) / 2;
if(matrix[mid][0] == target) {
return true;
}
else if(matrix[mid][0] > target) {
down = mid-1;
}
else {
up = mid+1;
}
}
int row = down; //> possibile row
//> use binary search to find target in specific row
int left = 0, right = matrix[row].size();
while(left <= right) {
int mid = (left + right) / 2;
if(matrix[row][mid] == target) {
return true;
}
else if(matrix[row][mid] < target) {
left = mid + 1;
}
else {
right = mid - 1;
}
}
return false;
}
};

Kotlin
class Solution {
fun searchMatrix(matrix: Array<IntArray>, target: Int): Boolean {
var up = 0
var down = matrix.size
while(up < down) {
val mid = up + (down - up) / 2
when {
matrix[mid][0] == target -> return true
matrix[mid][0] < target -> up = mid+1
else -> down = mid
}
}
--down
if(down < 0) {
return false
}
var left = 0
var right = matrix[0].size
while(left < right) {
val mid = left + (right - left) / 2
when {
matrix[down][mid] == target -> return true
matrix[down][mid] < target -> left = mid+1
else -> right = mid
}
}
return false
}
}

沒有留言:

張貼留言