Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
<Solution>這題和 Unique Path 滿像的,但這次是要求走過路線上的數值總和的最小值
還是用 dp 的觀念, dp[i][j] += min(dp[i-1][j], dp[i][j-1])
那有幾點可以注意
- 因為題目有說,只能向右或向下,所以 row 0 : dp[0][c] += dp[0][c-1], 1<= c < n
- 同理,col 0 : dp[r][0] += dp[r-1][0], 1<= r < m
- 不用再另外準備一個二維陣列來存,用題目給的 grid 就可以了
c++
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Solution { | |
private: | |
int ans, m, n; | |
public: | |
int minPathSum(vector<vector<int>>& grid) { | |
const int m = grid.size(), n = grid[0].size(); | |
//> first row | |
for(int c = 1; c < n; c++) { | |
grid[0][c] += grid[0][c-1]; | |
} | |
//> first col | |
for(int r = 1; r < m; r++) { | |
grid[r][0] += grid[r-1][0]; | |
} | |
//> find min sum | |
for(int r = 1; r < m; r++) { | |
for(int c = 1; c < n; c++) { | |
grid[r][c] += min(grid[r-1][c], grid[r][c-1]); | |
} | |
} | |
return grid[m-1][n-1]; | |
} | |
}; |
kotlin
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Solution { | |
fun minPathSum(grid: Array<IntArray>): Int { | |
val row = grid.size | |
val col = grid[0].size | |
for(r in 1 until row) { | |
grid[r][0] += grid[r-1][0] | |
} | |
for(c in 1 until col) { | |
grid[0][c] += grid[0][c-1] | |
} | |
for(r in 1 until row) { | |
for(c in 1 until col) { | |
grid[r][c] += Math.min(grid[r-1][c], grid[r][c-1]) | |
} | |
} | |
return grid.last().last() | |
} | |
} |
沒有留言:
張貼留言