Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
Example:
Input:s = 7, nums = [2,3,1,2,4,3] Output: 2 Explanation: the subarray[4,3] has the minimal length under the problem constraint.
Follow up:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
<Solution>
想法如下
- 用一個變數計算目前的 sum,當 sum >= s 的時候,開始找答案
- 當 sum >= s 這個條件成立時,計算出目前的 subarray 長度,然後縮起始位置並減掉該位置的值,看看 sum >= s 這個條件是不是還是成立,是的話,再重複做之前的動作
Java(參考解法)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Solution { | |
public int minSubArrayLen(int s, int[] nums) { | |
int sum = 0, left = 0, ans = Integer.MAX_VALUE; | |
for(int i = 0; i < nums.length; i++) { | |
sum += nums[i]; | |
while(sum >= s) { | |
ans = Math.min(ans, i - left + 1); | |
sum -= nums[left++]; | |
} | |
} | |
return ans == Integer.MAX_VALUE ? 0 : ans; | |
} | |
} |
kotlin
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Solution { | |
fun minSubArrayLen(target: Int, nums: IntArray): Int { | |
var ans = Int.MAX_VALUE | |
var left = 0 | |
var sum = 0 | |
for(right in nums.indices) { | |
sum += nums[right] | |
while(sum >= target) { | |
ans = Math.min(ans, right-left+1) | |
sum -= nums[left++] | |
} | |
} | |
return if(ans == Int.MAX_VALUE) 0 else ans | |
} | |
} |
沒有留言:
張貼留言