For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
Format
The graph containsn nodes which are labeled from 0 to n - 1 . You will be given the number n and a list of undirected edges (each edge is a pair of labels).
The graph contains
You can assume that no duplicate edges will appear in edges . Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges .
Example 1 :
Input:n = 4 ,edges = [[1, 0], [1, 2], [1, 3]] 0 | 1 / \ 2 3 Output:[1]
Example 2 :
Input:n = 6 ,edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]] 0 1 2 \ | / 3 | 4 | 5 Output:[3, 4]
Note:
- According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”
- The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.
想法如下
- 這題的思路和 topological sorting 有點類似。先從一個數列來看,找到一個位置,離兩端的距離有最短值,那個位置就是在中間的位置 (如果數列長度是偶數的話,那就是中間那兩個位置),所以這題要找的,就是在最長路徑上的中間位置
- 在數列上,可以用兩個指標分別兩端出發,當兩個指標指在同一個位置,或是相隔 1,那麼就是要找的答案
- 這題的 input 是一個無向圖,利用 topological sorting 的想法來看,可以先找到最邊緣,也就是只和一個節點有 edge 的節點,來當作起端,就像是在數列上,是從兩端開始,在無向圖上,就找到最邊緣的 leaf node,這樣才是在最長路徑上找
- 從 leaf node 出發,然後把它和它相連 node 之間的 edge,從無向圖中刪除,看看是否有找到新的 leaf node,就這樣一層一層向中間邁進
- 上面這個步驟,終止的條件在於 n <= 2。如同前面提到的,這題的答案會是中間那個位置(長度是奇數時),或是中間那兩個位置(長度是偶數時),所以每次歷遍 leaf node 的時候,都將 n 減掉當下 leaf node 的個數
code 如下
Java(參考解法)
Kotlin
沒有留言:
張貼留言